Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Med Entomol ; 61(2): 274-308, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38159084

ABSTRACT

The Yucatan Peninsula is a biogeographic province of the Neotropical region which is mostly encompassed by the 3 Mexican states of Campeche, Quintana Roo, and Yucatán. During the development of the International Joint Laboratory ELDORADO (Ecosystem, bioLogical Diversity, habitat mOdifications and Risk of emerging PAthogens and Diseases in MexicO), a French-Mexican collaboration between the IRD (Institut de Recherche pour le Développement) and UNAM (Universidad Nacional Autónoma de México) in Mérida, it became evident that many putative mosquito species names recorded in the Mexican Yucatan Peninsula were misidentifications/misinterpretations or from the uncritical repetition of incorrect literature records. To provide a stronger foundation for future studies, the mosquito fauna of the Mexican Yucatan Peninsula is here comprehensively reviewed using current knowledge of taxonomy, ecology, and distribution of species through extensive bibliographic research, and examination of newly collected specimens. As a result, 90 mosquito species classified among 16 genera and 24 subgenera are recognized to occur in the Mexican Yucatan Peninsula, including 1 new peninsula record and 3 new state records.


Subject(s)
Culicidae , Animals , Ecosystem , Mexico , Biodiversity , Ecology
2.
Elife ; 112022 Oct 12.
Article in English | MEDLINE | ID: mdl-36222650

ABSTRACT

The ANOSPP amplicon panel is a genus-wide targeted sequencing panel to facilitate large-scale monitoring of Anopheles species diversity. Combining information from the 62 nuclear amplicons present in the ANOSPP panel allows for a more senstive and specific species assignment than single gene (e.g. COI) barcoding, which is desirable in the light of permeable species boundaries. Here, we present NNoVAE, a method using Nearest Neighbours (NN) and Variational Autoencoders (VAE), which we apply to k-mers resulting from the ANOSPP amplicon sequences in order to hierarchically assign species identity. The NN step assigns a sample to a species-group by comparing the k-mers arising from each haplotype's amplicon sequence to a reference database. The VAE step is required to distinguish between closely related species, and also has sufficient resolution to reveal population structure within species. In tests on independent samples with over 80% amplicon coverage, NNoVAE correctly classifies to species level 98% of samples within the An. gambiae complex and 89% of samples outside the complex. We apply NNoVAE to over two thousand new samples from Burkina Faso and Gabon, identifying unexpected species in Gabon. NNoVAE presents an approach that may be of value to other targeted sequencing panels, and is a method that will be used to survey Anopheles species diversity and Plasmodium transmission patterns through space and time on a large scale, with plans to analyse half a million mosquitoes in the next five years.


Subject(s)
Anopheles , Animals , Anopheles/genetics , Burkina Faso , Gabon
3.
Parasite ; 29: 19, 2022.
Article in English | MEDLINE | ID: mdl-35348456

ABSTRACT

The mosquito species Aedes (Ochlerotatus) coluzzii Rioux, Guilvard & Pasteur, 1998 was distinguished from its sibling species Aedes detritus (Haliday, 1833) using an isoenzymatic method that required the destruction of the entire specimen, therefore no holotype was designated by the species authors. We aimed to designate a neotype for Ae. coluzzii from specimens collected from the type-locality and individually reared up to adult stage. Genomic DNA was extracted from pupal exuvia and ITS2 was sequenced, enabling verification of the identity of each specimen as Ae. coluzzii or Ae. detritus. Among the series of Ae. coluzzii, a male was designated as neotype and deposited in a collection. To our knowledge, this is the first time the type of a mosquito species is deposited thanks to its molecular identification from its pupal exuvia. The set of identified specimens allowed additional phylogenetic and morphologic studies.


Title: Utilisation d'une exuvie nymphale pour désigner le néotype intact d'une espèce appartenant à un complexe d'espèces jumelles - le cas d'Aedes coluzzii (Diptera, Culicidae). Abstract: L'espèce de moustique Aedes (Ochlerotatus) coluzzii Rioux, Guilvard & Pasteur, 1998 a été distinguée de son espèce jumelle Aedes detritus (Haliday, 1833) par une méthode isoenzymatique qui a nécessité la destruction de l'ensemble du spécimen, et donc aucun holotype n'a été désigné par les auteurs de l'espèce. Notre objectif était de désigner un néotype pour Ae. coluzzii à partir de spécimens collectés dans la localité-type et élevés individuellement jusqu'au stade adulte. L'ADN génomique a été extrait de l'exuvie nymphale et l'ITS2 a été séquencé, permettant la vérification de l'identité de chaque spécimen comme Ae. coluzzii ou Ae. détritus. Parmi la série d'Ae. coluzzii, un mâle a été désigné comme néotype et déposé dans une collection. À notre connaissance, c'est la première fois que le type d'une espèce de moustique est déposé grâce à l'identification moléculaire à partir de son exuvie nymphale. L'ensemble des spécimens identifiés a permis des études phylogénétiques et morphologiques complémentaires.


Subject(s)
Aedes , Ochlerotatus , Aedes/anatomy & histology , Animals , Base Sequence , Male , Ochlerotatus/genetics , Phylogeny , Pupa
4.
Insects ; 11(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171885

ABSTRACT

The global expansion of Aedes albopictus, together with the absence of specific treatment and vaccines for most of the arboviruses it transmits, has stimulated the development of more sustainable and ecologically acceptable methods for control of disease transmission through the suppression of natural vector populations. The sterile insect technique (SIT) is rapidly evolving as an additional tool for mosquito control, offering an efficient and more environment-friendly alternative to the use of insecticides. Following the devastating chikungunya outbreak, which affected 38% of the population on Reunion Island (a French overseas territory in the southwest of the Indian Ocean), there has been strong interest and political will to develop effective alternatives to the existing vector control strategies. Over the past 10 years, the French Research and Development Institute (IRD) has established an SIT feasibility program against Ae. albopictus on Reunion Island in collaboration with national and international partners. This program aimed to determine whether the SIT based on the release of radiation-sterilized males is scientifically and technically feasible, and socially acceptable as part of a control strategy targeting the local Ae. albopictus population. This paper provides a review of a multi-year and a particularly broad scoping process of establishing the scientific and technological feasibility of the SIT against Ae. albopictus on Reunion Island. It also draws attention to some prerequisites of the decision-making process, through awareness campaigns to enhance public understanding and support, social adoption, and regulatory validation of the SIT pilot tests.

5.
Parasit Vectors ; 13(1): 522, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33066796

ABSTRACT

BACKGROUND: Anopheles multicolor is known to be present in the arid areas of Africa north of the Sahara Desert, especially in oases. To date, its presence in Mauritania has not been reported. Here, we present the first record of its presence in Nouakchott, the capital of Mauritania. The larvae of An. multicolor, together with those of An. arabiensis, the major malaria vector in the city, were found thriving in highly saline surface water collections. METHODS: Entomological surveys were carried out during 2016-2017 in Nouakchott. Mosquito larval habitats were investigated through larval surveys while indoor resting culicid fauna were collected using hand-held aspirator. Physicochemical parameters of the larval habitats were measured on-site, at the time mosquitoes were collected. Larvae and pupae were reared to adults in the insectaries. Morphological and polymerase chain reaction (PCR)-based methods were used to identify newly emerged adults. Batches of fourth-instar larvae were used to assess salinity tolerance by exposing them to increasing concentrations of NaCl, and mortality was monitored throughout development. RESULTS: Morphological and molecular results confirmed that the specimens were An. multicolor and An. arabiensis. Sequences of 24 An. multicolor adult mosquitoes showed 100% nucleotide identity with the published sequences of An. multicolor from Iran. The physicochemical analysis of the water from the two larval habitats revealed highly saline conditions, with NaCl content ranging between 16.8 and 28.9 g/l (i.e. between c.50-80% seawater). Anopheles multicolor and An. arabiensis fourth-instar larvae survival rates at 17.5 g/l NaCl were 86.5% and 75%, respectively. Anopheles arabiensis larvae showed variable levels of salt tolerance according to the larval habitat. Adult An. multicolor specimens were collected resting indoor at low frequency (0.7%) compared to the other culicid mosquitoes. CONCLUSIONS: To the best of our knowledge, this paper is the first report of An. multicolor in Mauritania, extending the known distributional range of the species to the south, as well as to the west. Highly salt-tolerant populations of An. arabiensis and An. multicolor were observed. Because salt-water collections are widespread in Nouakchott, the relevance of these findings for the dynamics and epidemiology of malaria transmission needs to be assessed.


Subject(s)
Anopheles/physiology , Malaria/epidemiology , Mosquito Vectors/physiology , Animals , Anopheles/genetics , Anopheles/parasitology , Ecosystem , Female , Larva , Malaria/parasitology , Mauritania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Salinity
6.
PLoS One ; 15(1): e0227407, 2020.
Article in English | MEDLINE | ID: mdl-31951601

ABSTRACT

Mosquitoes are responsible for the transmission of major pathogens worldwide. Modelling their population dynamics and mapping their distribution can contribute effectively to disease surveillance and control systems. Two main approaches are classically used to understand and predict mosquito abundance in space and time, namely empirical (or statistical) and process-based models. In this work, we used both approaches to model the population dynamics in Reunion Island of the 'Tiger mosquito', Aedes albopictus, a vector of dengue and chikungunya viruses, using rainfall and temperature data. We aimed to i) evaluate and compare the two types of models, and ii) develop an operational tool that could be used by public health authorities and vector control services. Our results showed that Ae. albopictus dynamics in Reunion Island are driven by both rainfall and temperature with a non-linear relationship. The predictions of the two approaches were consistent with the observed abundances of Ae. albopictus aquatic stages. An operational tool with a user-friendly interface was developed, allowing the creation of maps of Ae. albopictus densities over the whole territory using meteorological data collected from a network of weather stations. It is now routinely used by the services in charge of vector control in Reunion Island.


Subject(s)
Aedes/physiology , Models, Biological , Mosquito Control , Mosquito Vectors/physiology , Animals , Hot Temperature , Humans , Population Dynamics , Rain
7.
Mol Ecol ; 29(19): 3593-3606, 2020 10.
Article in English | MEDLINE | ID: mdl-33463828

ABSTRACT

Aedes aegypti is among the best-studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re-evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7-28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4-15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.


Subject(s)
Aedes , Yellow Fever , Aedes/genetics , Africa , Animals , Asia , Humans , Indian Ocean , Madagascar , Mosquito Vectors/genetics , Reunion , Yellow Fever/genetics
8.
Insects ; 10(8)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31405080

ABSTRACT

For the production of several hundred thousands of Aedes albopictus sterile males for the implementation of a Sterile Insect Technique (SIT) program, no costly mass-rearing equipment is needed during the initial phases, as optimized rearing at laboratory scale can be sufficient for the first steps. The aim of this study was to maximize the egg production by optimizing adult rearing methods for Ae. albopictus. The effect of parameters such as male/female ratio, density of adults, membrane type for blood feeding, quantity of blood delivered, continuous or discontinuous blood feeding, and surface of substrates for egg laying on overall egg production was tested to find optimized conditions. Based on the number of eggs produced per cage in response to the parameters tested, the optimum cage set-up was seen to be 1500 adults in a 30 × 30 × 30 cm cage with a male/female sex ratio of 1:3, fed by fresh bovine blood for periods of 30 min using a cellulose membrane covering a 10 cm stainless steel plate heated by a Hemotek device, and the provision of five oviposition cups to collect eggs. With this set-up, production per cage can reach a maximum of 35,000 eggs per week.

9.
Parasit Vectors ; 12(1): 81, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30755268

ABSTRACT

BACKGROUND: To develop an efficient sterile insect technique (SIT) programme, the number of sterile males to release, along with the spatial and temporal pattern of their release, has to be determined. Such parameters could be estimated from a reliable estimation of the wild population density (and its temporal variation) in the area to treat. Here, a series of mark-release-recapture experiments using laboratory-reared and field-derived Aedes albopictus males were carried out in Duparc, a selected pilot site for the future application of SIT in the north of La Reunion Island. METHODS: The dispersal, longevity of marked males and seasonal fluctuations in the population size of native mosquitoes were determined from the ratio of marked to unmarked males caught in mice-baited BG-Sentinel traps. The study was conducted during periods of declining population abundance (April), lowest abundance (September) and highest abundance (December). RESULTS: According to data collected in the first 4 days post-release, the Lincoln index estimated population size as quite variable, ranging from 5817 in April, to 639 in September and 5915 in December. Calculations of daily survival probability to 4 days after release for field and laboratory males were 0.91 and 0.98 in April, respectively, and 0.88 and 0.84 in September, respectively. The mean distance travelled (MDT) of released field males were 46 m, 67 m and 37 m for December, April and September experiments, respectively. For released laboratory males, the MDT was 65 m and 42 m in April and September, respectively. CONCLUSIONS: Theoretically, the most efficient release programme should be started in July/August when the mosquito population size is the lowest (c.600 wild males/ha relative to 5000 wild males estimated for December and April), with a weekly release of 6000 males/ha. The limited dispersal of Ae. albopictus males highlights the nessecity for the widespread release of sterile males over multiple sites and in a field setting to avoid topographical barriers and anthropogenic features that may block the migration of the released sterile male mosquitoes.


Subject(s)
Aedes/physiology , Infertility, Male , Mosquito Control/methods , Seasons , Sexual Behavior, Animal , Animals , Longevity , Male , Pilot Projects , Population Density , Reunion
10.
Ecol Evol ; 8(16): 7835-7848, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250667

ABSTRACT

Aedes aegypti, the major vector of dengue, yellow fever, chikungunya, and Zika viruses, remains of great medical and public health concern. There is little doubt that the ancestral home of the species is Africa. This mosquito invaded the New World 400-500 years ago and later, Asia. However, little is known about the genetic structure and history of Ae. aegypti across Africa, as well as the possible origin(s) of the New World invasion. Here, we use ~17,000 genome-wide single nucleotide polymorphisms (SNPs) to characterize a heretofore undocumented complex picture of this mosquito across its ancestral range in Africa. We find signatures of human-assisted migrations, connectivity across long distances in sylvan populations, and of local admixture between domestic and sylvan populations. Finally, through a phylogenetic analysis combined with the genetic structure analyses, we suggest West Africa and especially Angola as the source of the New World's invasion, a scenario that fits well with the historic record of 16th-century slave trade between Africa and Americas.

11.
PLoS One ; 13(8): e0202236, 2018.
Article in English | MEDLINE | ID: mdl-30107004

ABSTRACT

The control of Aedes albopictus through Sterile Male Releases requires that the most competitive males be mass-reared and sterilized usually with gamma- or X-ray radiation prior to release. Developing an understanding of the impact of irradiation treatment on flight performance in sterile males is very important because any fitness cost may reduce the efficacy of SIT intervention in the field. Here, we examined the role of irradiation exposure and sugar-feeding on daily flight activity and performance of Ae. albopictus males sterilized during pupal stage with gamma-radiation at 35Gray from a Caesium 137 source. We used a previously developed automated video tracking system to monitor the flight activity of different groups of sterile and control non-sterile males over 24 hours in a flight arena. This monitoring took place under controlled laboratory conditions and we wished to quantify the daily flight activity and to highlight any changes due to radiation treatment and nutritional conditions (starved versus sugar fed). Our experimental evidence demonstrated a characteristic diurnal flight activity with a bimodal pattern regardless of the treatment. Precisely, both irradiated and non-irradiated males exhibited two distinct peaks in flight activity in the morning (6-8 a.m.) and late afternoon (4-6 p.m.). Under changing physiological conditions, irradiated males were generally more active over time and flew longer overall distances than control male populations. These results suggest some internal circadian control of the phase relation to the light-dark cycle, with evidence for modification of flight performance by nutritional status. The fact that daily activity patterns are alike in irradiated and control Ae. albopictus males, and that sterile males could display higher flight performance, is in contrast with the hypothesis that irradiation treatment appears to reduce the fitness of male mosquitoes. We discuss the implications of the present study in sterile-male release programs against Ae. albopictus.


Subject(s)
Aedes/physiology , Aedes/radiation effects , Flight, Animal/radiation effects , Mosquito Control/methods , Mosquito Vectors/physiology , Mosquito Vectors/radiation effects , Aedes/virology , Animals , Cesium Radioisotopes , Circadian Rhythm , Dose-Response Relationship, Radiation , Fertility/radiation effects , Gamma Rays , Humans , Male , Mosquito Vectors/virology , Pupa/radiation effects
12.
Insects ; 8(3)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28862681

ABSTRACT

Determining the abundance and distribution of male mosquitoes in the wild and establishing species seasonality in candidate pilot sites is of particular interest with respect to the use of the sterile-male technique. With the knowledge that using mice as bait in BG-Sentinel traps effectively enhances Aedes albopictus male and female trapping success, the present study was designed to determine whether attractants derived from mouse odour blend could be a viable substitute for live mice to lure Ae. albopictus mosquitoes into traps. The effects of baiting BG-Sentinel traps with mice, carbon dioxide (CO2), and attractants derived from litter mouse odours (mouse litter (ML)) and a mouse odour blend (MOB) on the efficiency of trapping Ae. albopictus males and females were tested using a Latin square design. The BG-Sentinel trap baited with CO2 + ML caught a significantly larger number of mosquitoes compared to traps baited with mice only. The BG-Sentinel traps containing only CO2 or CO2 + MOB, however, did not catch significantly more mosquitoes compared to the other traps. The proportions of males caught in the BG-Sentinel traps did not differ significantly between the respective attractants. The results from this study confirm that CO2 bait is efficient to provide a reliable estimation method for Ae. albopictus adult male abundance in the wild, and suggest that mouse litter baits in combination with CO2 could be used to enhance Aedes trapping success in BG-Sentinel traps.

13.
PLoS One ; 11(11): e0163788, 2016.
Article in English | MEDLINE | ID: mdl-27806056

ABSTRACT

The production of large numbers of males needed for a sustainable sterile insect technique (SIT) control program requires significant developmental and operational costs. This may constitute a significant economic barrier to the installation of large scale rearing facilities in countries that are undergoing a transition from being largely dependent on insecticide use to be in a position to integrate the SIT against Aedes albopictus. Alternative options available for those countries could be to rely on outsourcing of sterile males from a foreign supplier, or for one centralised facility to produce mosquitoes for several countries, thus increasing the efficiency of the mass-rearing effort. However, demonstration of strain compatibility is a prerequisite for the export of mosquitoes for transborder SIT applications. Here, we compared mating compatibility among Ae. albopictus populations originating from three islands of the South Western Indian Ocean, and assessed both insemination rates and egg fertility in all possible cross-mating combinations. Furthermore, competitiveness between irradiated and non-irradiated males from the three studied strains, and the subsequent effect on female fertility were also examined. Although morphometric analysis of wing shapes suggested phenoptypic differences between Ae. albopictus strains, perfect reproductive compatibility between them was observed. Furthermore, irradiated males from the different islands demonstrated similar levels of competitiveness and induced sterility when confronted with fertile males from any of the other island populations tested. In conclusion, despite the evidence of inter-strain differences based on male wing morphology, collectively, our results provide a new set of expectations for the use of a single candidate strain of mass-reared sterile males for area-wide scale application of SIT against Ae. albopictus populations in different islands across the South Western Indian Ocean. Cross-mating competitiveness tests such as those applied here are necessary to assess the quality of mass reared strains for the trans-border application of sterile male release programs.


Subject(s)
Aedes , Infertility , Mosquito Control/methods , Sexual Behavior, Animal , Animals , Female , Indian Ocean Islands , Insemination , Male , Radiation, Ionizing
14.
Parasit Vectors ; 9(1): 514, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27658455

ABSTRACT

BACKGROUND: Trapping male mosquitoes in the field is essential for the development of area-wide vector control programs with a sterile insect technique (SIT) component. To determine the optimal temporal and spatial release strategy, an estimation of the wild population density and its temporal dynamics is essential. Among the traps available for such data collection, the BG-Sentinel trap developed by the Biogents company uses a combination of visual cues, convection currents and olfactory signals. Although in numerous cases, this trap has shown high efficiency in sampling Aedes albopictus, in some cases low capture rates of Ae. albopictus males were recorded for the BG-sentinel mosquito trap baited with synthetic attractants. METHODS: The effects of modifying the BG-sentinel trap (by adding one mouse, two or three live mice to the trap) on the efficiency of trapping Ae. albopictus males and females was tested. The experiment was carried out in three distinct areas on La Réunion that have been selected for pilot field testing of the release of sterile male Ae. albopictus mosquitoes. The effect of four types of attractant (including the generic BG-Lure, one mouse or two to three mice) in baited BGS traps was tested with a Latin square design in order to control for the variability of different sampling positions and dates. RESULTS: At the three studied sites, the number of Ae. albopictus adults caught and the proportion of males per trap consistently increased with the number of mice present in the trap. CONCLUSION: The results from this study suggest that some new attractants derived from, or similar to, mouse odors could be developed and tested in combination with other existing attractive components, such as CO2 and heat, in order to provide a reliable estimation method for Ae. albopictus adult male abundance in the wild.

15.
Parasite ; 23: 20, 2016.
Article in English | MEDLINE | ID: mdl-27101839

ABSTRACT

An updated checklist of 235 mosquito species from Madagascar is presented. The number of species has increased considerably compared to previous checklists, particularly the last published in 2003 (178 species). This annotated checklist provides concise information on endemism, taxonomic position, developmental stages, larval habitats, distribution, behavior, and vector-borne diseases potentially transmitted. The 235 species belong to 14 genera: Aedeomyia (3 species), Aedes (35 species), Anopheles (26 species), Coquillettidia (3 species), Culex (at least 50 species), Eretmapodites (4 species), Ficalbia (2 species), Hodgesia (at least one species), Lutzia (one species), Mansonia (2 species), Mimomyia (22 species), Orthopodomyia (8 species), Toxorhynchites (6 species), and Uranotaenia (73 species). Due to non-deciphered species complexes, several species remain undescribed. The main remarkable characteristic of Malagasy mosquito fauna is the high biodiversity with 138 endemic species (59%). Presence and abundance of species, and their association, in a given location could be a bio-indicator of environmental particularities such as urban, rural, forested, deforested, and mountainous habitats. Finally, taking into account that Malagasy culicidian fauna includes 64 species (27%) with a known medical or veterinary interest in the world, knowledge of their biology and host preference summarized in this paper improves understanding of their involvement in pathogen transmission in Madagascar.


Subject(s)
Culicidae/classification , Animal Distribution , Animals , Biodiversity , Checklist , Culicidae/growth & development , Female , Insect Vectors/classification , Larva , Madagascar , Male , Ovum , Species Specificity
16.
PLoS One ; 9(7): e100696, 2014.
Article in English | MEDLINE | ID: mdl-25004163

ABSTRACT

A transversal survey of immature mosquitoes was conducted on Mayotte Island (France) in the Comoros Archipelago, western Indian Ocean, with the aim to inventory the Culicidae and to document inter-species relationships in different habitats. In total 420 habitats were sampled for larvae and/or pupae mosquitoes, resulting in more than 6,000 specimens. Forty species belonging to 15 genera were collected, with eight taxa integrated for the first time to the Mayotte mosquito list. The most frequently recorded species were Stegomyia aegypti, St. albopicta, Anopheles gambiae and Eretmapodites subsimplicipes, the first three species being known vectors of viruses and parasites transmitted to humans. Mean species richness in habitats ranged from 1.00 to 3.29, with notable differences between habitats. For example, water-filled axils of banana leaves, tree-holes and crab-holes had low species richness, while cut bamboo, water pools, abandoned tires and marsh and swamp water had notably higher species richness. Twenty-seven mosquito species belonging to 12 genera were routinely collected (in ≥20% of at least one type of larval habitat) suggesting that multiple species play a role in the biocenosis of these aquatic habitats. Multispecies association was observed in 52% of the habitats. The co-occurrence of up to six species belonging to five genera was recorded in a single habitat. The mosquitoes of Mayotte show notable biogeographical affinities to those of Madagascar, as compared to the African continent. These two potential source areas are nearly equidistant from Mayotte, which in turn indicates biased dispersal from east to west. Our findings suggest that with relatively short-term intensive sampling in different habitats, it is possible to approach exhaustive species inventories based on collection of larvae. Mayotte, with its modest elevation range and land surface, has a notable species richness of mosquitoes with 45 well-documented species belonging to 15 genera.


Subject(s)
Culicidae/classification , Data Collection , Animals , Biodiversity , Comoros , Larva , Phylogeography
17.
Malar J ; 13: 21, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24423246

ABSTRACT

BACKGROUND: In Madagascar, indoor residual spraying (IRS) with insecticide was part of the national malaria control programme since the middle of the twentieth century. It was mainly employed in the highlands and the foothill areas, which are prone to malaria epidemics. Prior to a policy change foreseeing a shift from DDT to pyrethroids, a study was carried out to assess the entomological and parasitological impacts of IRS in areas with DDT or pyrethroids and in areas without IRS. METHODS: The study was carried out from October 2002 to February 2005 in three communes of the western foothill area of Madagascar. Two communes received IRS with DDT in February 2003, then IRS with pyrethroids (alphacypermethrin or deltamethrin) in February 2004. The third commune remained untreated. Mosquitoes were collected at night using human landing catches and early in the morning in resting places. Blood smears were obtained from schoolchildren and microscopically examined for Plasmodium presence. RESULTS: In total, 18,168 human landing mosquitoes and 12,932 resting anophelines were collected. The Anopheles species caught comprised 10 species. The main and most abundant malaria vector was Anopheles funestus (72.3% of human-seeking malaria vectors caught indoors). After IRS had taken place, this species exhibited a lower human biting rate and a lower sporozoite index. Overall, 5,174 blood smears were examined with a mean plasmodic index of 19.9%. A total of four Plasmodium species were detected. Amongst tested school children the highest plasmodial index was 54.6% in the untreated commune, compared to 19.9% in the commune sprayed with DDT and 11.9% in the commune sprayed with pyrethroid. The highest prevalence of clinical malaria attacks in children present at school the day of the survey was 33% in the untreated commune compared to 8% in the areas which received IRS. CONCLUSION: In terms of public health, the present study shows (1) a high efficacy of IRS with insecticide, (2) a similar efficacy of DDT and pyrethroid and (3) a similar efficacy of alphacypermethrin and deltamethrin. The use of IRS with DDT and pyrethroid greatly decreased the vector-human contact, with an associated decrease of the plasmodial index. However malaria transmission did not reach zero, probably due to the exophilic host-seeking and resting behaviours of the malaria vectors, thus avoiding contact with insecticide-treated surfaces indoors. The study highlights the strengths and weaknesses of the IRS implementation and the need for complementary tools for an optimal vector control in Madagascar.


Subject(s)
Anopheles , Insect Vectors , Insecticides , Malaria/prevention & control , Mosquito Control/methods , Animals , Anopheles/microbiology , Child , DDT , Female , Housing , Humans , Insect Vectors/microbiology , Madagascar/epidemiology , Malaria/epidemiology , Malaria/transmission , Nitriles , Prevalence , Pyrethrins , Seasons
18.
Parasite ; 20: 31, 2013.
Article in English | MEDLINE | ID: mdl-24025625

ABSTRACT

Four mosquito species, including a new species of the genus Stegomyia, are reported from Mayotte in the western Indian Ocean. The most abundant species were Stegomyia aegypti and St. albopicta. Only one species of the St. simpsoni group was observed, St. bromeliae. The fourth species is Stegomyia pia Le Goff & Robert n. sp. of which the larva, pupa, male and female are here described. The larval stages of St. pia n. sp. are morphologically similar to St. aegypti but differ in the number of branches of the seta 1-X; the adult is morphologically distinct for a number of characters, for instance the scutal ornamentation. Stegomyia pia n. sp. is uncommon but not rare, and largely distributed across Mayotte. Its larval habitats are natural and diverse including rock pools, tree holes, and cut and severed bamboos. The biology of adults remains unknown, especially female biting behaviour. Both morphological characters and nucleotide sequences of the ITS2 and COI genes indicate that this species is best placed in the genus Stegomyia. Dichotomous keys to the four species of Mayotte Stegomyia are presented for adults and fourth-instar larvae. The potential vector role of these mosquitoes is hypothesised. This paper underlines advances in knowledge of the biodiversity in the French overseas departments and territories.


Subject(s)
Aedes/classification , Aedes/anatomy & histology , Aedes/genetics , Animals , Base Sequence , Comoros , DNA/chemistry , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Female , Male , Mitochondria/enzymology , Molecular Sequence Data , NADH Dehydrogenase/genetics
19.
Parasit Vectors ; 5: 207, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22999320

ABSTRACT

BACKGROUND: During recent periods, the islands of the Republic of Seychelles experienced many diseases such as dengue, chikungunya, Bancroft's filaria and malaria. Mosquitoes transmit the agents that cause these diseases. Published information on mosquitoes in the Seychelles is notably dispersed in the literature. The maximum number of species obtained on a single field survey does not exceed 14 species. METHODS: We performed a comprehensive bibliographic review using mosquito and Seychelles as the key words, as well as conducted a mosquito field survey for larval and adult stages during the rainy season in December 2008. Sixteen sites were sampled on four granitic islands (Mahé, Praslin, La Digue and Aride) and six sites on coralline atolls in the extreme southwest of the country (Aldabra group). RESULTS: We found published references to 21 mosquito species identified at least on one occasion in the Seychelles. Our collections comprised 18 species of mosquitoes, all of them from the subfamily Culicinae; no Anophelinae was found. We also confirm that Aedes seychellensis is a junior synonym of Ae. (Aedimorphus) albocephalus. The first records for Culex antennatus and Cx. sunyaniensis are presented from the country, specifically from Aldabra and Praslin, respectively. Based on a comparison of the taxa occurring on the granitic versus coralline islands, only three species, Ae. albocephalus, Cx. scottii and Cx. simpsoni are shared. Aedes albopictus appeared to exclude largely Ae. aegypti on the granitic islands; however, Ae. aegypti was common on Aldabra, where Ae. albopictus has not been recorded. The notable aggressiveness of mosquitoes towards humans on coralline islands was mainly due to two species, the females of which are difficult to distinguish: Ae. fryeri and Ae. (Aedimorphus) sp. A. The number of mosquito species collected at least once in the Seychelles is now 22, among which five species (Ae. (Adm) sp. A, Cx. stellatus, Uranotaenia browni. Ur. nepenthes and Ur. pandani) and one subspecies (Ae. vigilax vansomerenae) are considered as endemic. Two illustrated identification keys, one for adult females and the other for larval stages, are presented. CONCLUSIONS: The knowledge of the culicidian fauna in the Seychelles has been notably updated. The number of mosquito species is relatively large with regards to land surface and distances to continental Africa, although the anophelines are totally lacking. The complex natural history of mosquitoes in the Seychelles provides examples of both vicariance- and dispersal-mediated divergences. They present superb examples for theoretical and applied island biology.


Subject(s)
Biota , Culicidae/classification , Culicidae/growth & development , Disease Vectors , Animals , Culicidae/anatomy & histology , Culicidae/parasitology , Female , Humans , Male , Seasons , Seychelles
20.
Am J Trop Med Hyg ; 87(3): 504-10, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22848099

ABSTRACT

Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites.


Subject(s)
Antibody Formation/immunology , Biomarkers/blood , Bites and Stings/diagnosis , Dengue/epidemiology , Dengue/transmission , Adolescent , Adult , Aedes , Animals , Bolivia/epidemiology , Cluster Analysis , Developing Countries , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Insect Vectors/immunology , Logistic Models , Male , Middle Aged , Multivariate Analysis , Saliva/immunology , Urban Population , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...